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Nearby Chebyshev (Powered) Rational Approximation

CHARLES B. DUNHAM

Department of Computer Science,
The University of Western Ontario,
London, Ontario, Canada N6A 5B7

Communicated by D. S. Lubinsky

Received October 26, 1987

The dependence of (powered) rational Chebyshev approximation on basis,
domain, and function being approximated is examined. © 1990 Academic Press, Inc.

Let W be a space with metric (J and C( W) be the space of continuous
functions on W. Let X be a compact subset of Wand, for a function g on
X, define

II gllx=sup{1 g(x)l:cEX}.

Let 5, r be fixed positive integers. The problem of Chebyshev approxima
tion on X by (powered) eneralized rational functions is, given families
{rPl' ... , rPn}, {l/.t 1, ..., l/.tm} in C( W) and linearly independent on X, and
given fE C(W), to find an n+m tuple A=(a" ...,an + m ) to minimize the
error norm

subject to the constraints

m

l: lan+il>O,
i~l

m

L an + il/.tlx) ";3 0,
i=l

XEX (0)

Such a parameter vector A is called best on X. In this paper we consider
the dependence of the error norm and best parameter vectors on f, the
bases of rational functions, and on X.

Comparable problems were investigated in [6, 8]. Special cases were
investigated in [3, 4, 7, 9, 10, 12] for 5 = r = 1.

The case 5 = r = 1 is classical. The author [20] developed a theory which
dealt with rationals raised to a power, that is, 5 = r. J. D. Lawson has told
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the author that his dissertation covered powering for approximating the
exponential. His student Lau [22J considered approximations of the form
pjqr, p a polynomial, q a first-degree polynomial. Kaufman and Taylor
[21 J considered a similar problem with the degree of p restricted. Another
student of Lawson, Trickett [23 J, considered the same forms as Lau. The
author has developed a theory for pSjqr, where p, q are power polynomials
in [24J, and for general p, q in [25].

The sensitivity of the solution to perturbations in the function being
approximated, the basis functions, and the domain is of interest in numeri
cal analysis. As such perturbations are inevitable in computation, one
hopes that the solution depends continuously on the arguments so that
deviations of the solution will be small if the perturbations are small
enough. Unfortunately there are cases where cntinuous dependence does
not hold. Sufficient conditions for continuous dependence are given.

PRELIMINARIES

Unless rational functions can be assigned a value where their
denominators vanish, it may not be possible to guarantee the existence of
a best approximation. Conventions for assigning values have been given by
Boehm [14, p. 84J and Goldstein [14, pp. 85-88]. We will assume that one
of these conventions is used and that there is a coefficient vector A such
that Q(A, .) > 0 (this happens if one of t/J l' ... , t/J m is positive, which is true
in all cases of practical interest). We then have existence of a best
approximation.

Since we assume that not all the denominator coefficients vanish, there
is no loss of generality in assuming that rational functions are normalized
such that

m

L lan + i /=1.
i=1

We will use the parameter semi-norm

ASSUMPTIONS AND RESULTS

DEFINITION. For X, Y closed (non-empty) subsets of W define

dist(X, Y)=sup{inf{a(x,y):yE Y}:XEX},

d(X, Y) = max {dist(X, Y), dist( Y, X)}.

(1)
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Let X, Xl> ..., be non-empty closed subsets of W. We say {Xd ~ X if
d(X, X k ) ~o.

We consider the case where {Xd ~ X and

IIrP~-rPili ~O,

Ill/!7- l/J;iI --> 0,

Illk-111 ~o.

i= 1, ..., n,

i = 1, ..., n,

Let us define for t a superscript (possibly blank)

R1(A, x) = [P'(A, x)]Sj[QI(A, x)Y

=[ t airP:(x)Jsl[.~ an+il/!:(X)]r
k-I 1--1

plf, X) = inf {II f - Rt(A, . )1Ix: Qt(A, x)? 0

k~\ jan+kl = I},
for XEX,

and let A k be a best parameter in approximation of fk by R k on X k . Let
II Ilk denote the norm on X k •

LEMMA 1. Let {rPI, ..., rPn} and {l/!I, ..., l/!m} be independent on X.
p(f, X)::;::; lim infk~ 00 Pk(fk' Xk) and {A k} has an accumulation point.

Proof Suppose that there are infinitely many k such that
II Rk(Ak, .)11 x > 4 II f II x· We can then suppose without loss of generality
that this is true for all k. By the triangle inequality we have

which contradicts A k being best. We, therefore, must have

From the normalization (1) we obtain

IPk(Ak, x)l' = IRk(Ak, x)I·1 Qk(Ak, xW

::;::; 4 II fk Ilk * [~i Ill/!~+ilikT
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By arguments similar to those of [3, p.485] it is shown that the above
inequality implies that {II A k [I c} is bounded, bounding the numerator coef
ficients. The denominator coefficients are bounded by the normalization
(1), so {A k} is a bounded sequence and has an accumulation point AO.
Assume that {A k} -+ AD, If p(f, X) > lim infk ~ co Pk(fb Xd then we can
assume that for all k, there is e> 0 such that

There exists XEX such that I f(x) - R(AO, x)1 > II f- R(AO, . )llx-e/2 and
Q(AO,x»O. There exists {xd, XkEXk and {xd-+x. We have
I fk(Xk) - Rk(Ak, Xk)! -+ I f(x) - R(AO, x)1 and we have a contradiction.

The following example shows that we need not have Pk(f, X) -+ p(f, X)
nor have accumulation points of {A k} best.

EXAMPLE 1. Let X = [0, 1],f= 1, and

Rk(A, x) = al(x - l/k)/(a2 +a3x).

The denominator constraints ensure that Rk(A, l/k) = 0 for all A, k, hence
Pk(f, X) = 1 and 0 is best in the k-problem. But f = x/x and so p(f, X) = O.

Example 2 of [7] should be consulted for variation of domain only.
Example 1 of [7] should be consulted for the case of failure of inde
pendence.

These very simple examples show that no very strong theory is possible
if the best approximation to f on X has a zero in its denominator. If its
denominator is positive, we can obtain stronger results.

DEFINTION. A rational function is called admissible on X if it can be
written as a ratio with positive denominators on X.

THEOREM 1. Let {~1' ..., ~n} be independent on X. Let f have an
admissible best approximation on X. Then {A k

} has an accumulation point,
any accumulation point is best, and Pk(fb Xk) -+ p(f, X).

Proof Let R(A*, .) be best to f on X and Q(A *, x) > 0 for x E X. Then
there is a closed neighbourhood N of X such that Q(A *, x) > 0 for x E N.
There exists K such that k > K implies that X keN.

By Lemma 1, {A k
} has an accumulation point A. Assume without loss

of generality that {A k} -+ A. There exists L such that k> L implies
Qk(Ak, x) > 0 for x E N. From this it can be deduced that Rk(Ak,.)
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converges uniformly to R(A, .) on N. If A is not best, there is 8> 0 such
that

Ilf-R(A, ·)11 > I/f-R(A*, ·)11 +8.

By arguments of [3, p. 485] there is x E X with Q(A, x) > 0 such that

If(x)-R(A, x)1 > I//-R(A*, . )I[ +e/2.

(2)

for all k sufficiently large. But by continuity arguments we have for
sufficiently large k,

contradicting optimality of A k. Thus A is best. If PkUb X k ) f+p(f, X)
then by Lemma 1 we can assume without loss of generality that
PkUb X k) > p(f, X) + e, which is (2) and which cannot hold.

COROLLARY. Let {¢ 1> ••. , t/Jn} be independent on X. Let there exist a
unique parameter A * 01 best approximation under the normalization (1) and
Q(A*, x»O on X. Then

(i) {A k } -+ A*,

(ii) Qk(Ak, ·»0 on X k and on X for all k sufficiently large,

(iii) Rk(Ak,.) converges uniformly to R(A *, .) on X.

It should be noted that (ii) ensures existence of a best admissible
approximation for sufficiently small perturbations: for a special case, see
[5J.

VARYING THE FUNCTION ONLY

If we vary the function I being approximated but keep basis functions
and domain X fixed, the problem of this paper reduces to the problem of
the behaviour of the rational Chebyshev operator. It is known in this case
that p is continuous [11, p. 120] and accumulation points of {A k

} are best
by straightforward generalization of [10]. The corollary obtained for the
general case is still valid. The fact that in approximation by ordinary
rational functions R;:'[a,I1], the Chebyshev operator, is not continuous
[1, p. 167; 2; 13; 15] shows that the hypotheses of the coronary cannot be
weakened even in this special case.
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VARYING THE DOMAIN ONLY

Example 2 of [7] shows that the theorem cannot be improved even if we
fix the basis functions and function f An example of [3] shows that (iii)
of the corollary cannot be improved either. That example is generalized in
[16].

VARYING THE BASIS FUNCTIONS ONLY

Example 1 shows that the theorem cannot be improved even if we fix the
domain X and function f The following example shows that the corollary
cannot be improved either.

EXAMPLE 2. Let X= [-1,1] andf(x)= T2(x) + 1=2x2
,

Rk(A, x) = (1- xjk)(al + a2x)j(a3 + a4x)

R(A, x) = (al +a2x)j(a3 +a4x).

As f - 1 alternates exactly twice on X, 1 is uniquely best by R to f by the
classical alternating theory. As the problem of approximation by R k to f is
the problem of approximation by R i[ - 1, 1] with (multiplicative) weight
s(x) = 1 - xjk to g(x) = f(x)j[l - xjk], there is a unique solution Rk(A\ . ).
As f - [1 - xjk] c does not alternate on [ -1, 1] for any real c, Rk(A\ . )
cannot be degenerate and so is non-degenerate, hence f - Rk(Ak, .) must
alternate at least three times. Thus Rk(Ak, .) h 1.

ApPROXIMATION WITH A WEIGHT FUNCTION

In Chebyshev approximation with respect to multiplicative weight w, we
are to minimize II w(f- R(A, .))11. We can convert this problem to
standard form by approximating wf and using numerator basis
{W1/s<pl' ..., w1/s<pn}' The problem of approximating with a variable weight is
to see what happens when w is a continuous function on W, II w- Wk II ~ 0,
and we approximate with respect to Wk' Even if we stick to positive
weights, (iii) of the corollary need not hold if we drop uniqueness of
parametrization-see [8, Theorem 6] and the following example.

If we let weights have a zero, we may not be able to do better than
Lemma 1.
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EXAMPLE 3. LetX=[0,I]u[2,2+Hf=1,

R(A, x) = a j xl[a2 +a3x],

= [ajl0J/[a2+ a3(x - 2)],

Wk(X) = 1,

= x- 2 + (11k),

O:::;x:::;l

x~2

x~2.

For a j = 0, R(A, .) is zero except where Q(A, .) has a zero. For a2 # 0,
R(A,O)=O and Ilwk(f-R(A,·))II~1 with equality if aj=O. For
a2 = 0, a j # 0, 1R(A, 2)1 = 00. Hence 0 is best with respect to Wk. But with
weight w,

w(x)=I,

=x-2,

ois not best (a j = a3= 1, a2= 0 is much better with an exact fit on [0, 1]
and weighted error norm of 4/10 on [2, 2 - D).

ALTERNATIVE CONSTRAINTS

An alternative constraint, particularly desirable if we wish to go to com
plex approximation, is to drop the requirement that the denominator be
~ 0 and merely require

m

L lan+il >0,
i=j

(0')

which merely rids us of identically zero denominators. The theory goes
through similarly as before (in this context we call a rational admissible if
its denominator has no zeros).

Again, we may not be able to do better than Lemma 1. First we perturb
only bases.

EXAMPLE 1'. Take the problem of Example 1 and to X = [0, 1] add the
set [2, 3] with

Rk(A, x) = aj(x - 2 + l/k)/[a2+ a3(x - 2 + 11k)]

for x ~ 2. If Rk(A, .) has no pole at 11k, II f - Rk(A, .)II~ 1 by earlier
arguments with equality for a j = o. If Rk(A, .) has a pole at 11k, a2 = -a3lk
and Rk(A, 2) = 00 unless a j =0, so Ilf-Rk(A,· )11 ~ 1 also. But f is
represented exactly by R(A, .), a j = a3 = 1, a2 = O.
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Next we perturb only the domain.

EXAMPLE. Let Xk = [0, 1J u [3/2, 2 + 11kJ,f= 1, and

R(A, x) = a1x/[a2+ a3xJ,

= a1(x - 2)/[a2+ a3(x - 2)],

= al(x - 2)/[a2 + a3(x - 2)2J, x~2.

If a2 #0,R(A,0)=1 and Ilf-R(A,·)llk~1 with equality if a1=0. If
a2 = 0, a1i= 0, IR(A, x)1 ~ 00 as x ~ 2 from above. Hence 0 is best on Xk
with Pk(f, Xk) = 1. But for a1= a3= 1, a2= 0, R(A, .) = f on X.

Whether an example with analytic functions exists is open.
For X = [a, PJ, a set of bounded ordinary rational functions under the

constraint (0') is precisely a set of ordinary rational functions under the
constraint Q(A, . ) > 0 on [a, PJ: we simply cancel out poles. Thus the cited
discontinuity results for admissible ordinary rationals on [a, PJ carryover
without change.

COMPLEX ApPROXIMATION

Complex analogues of the conventions of Boehm and of Goldstein have
been given by the author in [17,18]. These give existence under the
requirement (0'). The theory goes through similarly as before, with the
latter (counter) examples holding. The only gap in the theory is the lack of
counterexamples to uniform convergence.

A possible requirement in complex approximation is (0') plus

Re Q(A,· )~O.

The corresponding criterion for being admissible is

Re Q(A,·) >0,

which is required by the theory of Dolganov [19J (that term is even used).
Again the theory goes through similarly with the gap in counterexamples
to uniform convergence being perhaps more difficult to fill.

RESTRICTING THE PROBLEM FOR BETTER BEHAVIOUR

We have seen that Lemma 1 is best possible if we allow perturbation of
the bases (even just the numerator basis), approximation on non-subsets of
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X, or have a weight with a zero. If we do not allow these, we can do as
well as in Theorem 1 without assuming admissibiHty.

THEOREM 2. If bases are fixed, X k C X, and w has no zeros, the conclu
sion of Theorem 1 holds for weighted approximation.

Proof Argue as in the proof of Theorem 1 that for aU k sufficiently
large,

Now as w has no zeros on X, R(A*,·) is bounded on X. Let
z= {x. Q(A*, x)=O}, then WkUk-R(A*,'» -J> w(f-R(A*,·)) uniformly
on XrvZ and

If we are using Boehm's convention, the above holds with X replacing
X rv Z (adding Z makes no difference). If we are using Goldstein's conven
tion, the same is true since on Z, R(A*,·) equals};, (on the left) andf(on
the right). Now as XkcX,

for all k sufficiently large. But this last with (2') contradicts optimality of
Ak, proving A is best after all. Continuity of p follows from arguments
similar to those of Theorem 1.

NON-COMPACT X

Some of our theory can be easily extended to non-compact X or Xk • In
[18] existence is covered on such sets: the only additional assumption
needed is that approximated functions f and fk be bounded as well as
continuous. Lemma 1 extends, and Theorem 1 extends if W is locally com
pact. Its corollary holds in (i) but not in (ii), (iii). If weights wand Wk are
bounded and bounded away from zero as well as continuous, Theorem 2
goes through.

Remark. Example 3 with the point 2 omitted shows that bounding
away from zero is necessary.

The hard part of the theory is handling admissibility and uniform con
vergence, either in the negative sense (developing counterexamples) or in
the positive sense (giving sufficient conditions). Of particular difficulty is
obstaining a definitive theory with no gaps.
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APPENDIX I: EXISTENCE UNDER THE CONVENTION OF GOLDSTEIN

Consider the approximation problem of Dunham [25J with two differen
ces. We use the Goldstein-type convention

IF(A, x)1 = 00,

F(A, x) = f(x),

and we assume

P(A, x),iO, Q(A, x)=O

P(A, x) = Q(A, x) =° (3)

Iw(x, t)1 --+ 00, Itl--+ 00. (4)

The main existence theorem of [25J holds with sentence 2 deleted. The
proof is similar with (4) implying that {R(A\ .)} is bounded on a finite
subset Von which {tPlo ..., tPn} are independent. At the end, if Q(A, x) = 0,
boundedness implies P(A, x) = °also, hence f(x) - F(A, x) = °by conven
tion.

Examples of closed subsets of P were given in earlier papers, in par
ticular [18, p. 335J for interpolation (not valid with Boehm's convention).
In view of known difficulties with discrete ordinary rational approximation,
it is unlikely that a theory of admissible approximation more general than
that of [25J holds and for that case, Boehm's convention is better.

It is seen that theory remains true if (3), (4) are weakened to allow fixed
values for approximants at some points, provided tPl' ..., tPn are independent
on the remaining points.

APPENDIX II: UNIFORM CONVERGENCE ON INFINITE INTERVALS

Let 1= [a, 00) or (-00,00). We seek sufficient conditions for uniform
convergence on I of sequences of ordinary rational functions

from R;:'-=-\(I) under the normalization

m

THEOREM. Let m > n. Let {A k
} --+ AO. Let Q(AO, .) have no zeros on I.

Let the coefficient an + m of x m
- 1 (the highest denominator power) in

R(A O
, .) be non-zero. Then R(A k

, .) --+ R(AJ, .) uniformly on I.
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An argument is sketched in Dunham [9, p.17I]. If we set m= n the
theorem is likewise true. Let y = a~/a~n' For given 8> 0 there is K, M such
that k > K, Ix I~ M implies IR(A k, x) - y I< 8/2. Uniform convergence on
Ix I~ M is automatic. The hypothesis that the coefficient of X m is non-zero
is essential.

EXAMPLE. Let R(A\x)=1/[1+x/k] then R(A\x)~R(Ao,.)=l

pointwise on [0, C'f)) but not uniformly.

The theory applies without change to complex rationals, and closed
regions with C'f) on the boundary.

Uniform convergence of discretization can fail on infinite intervals.

EXAMPLE. Let n = 1, m = 2, and f(x) = 2[1/(1 + x)] - 1. f =f - 0 is
monotone on X = [0, C'f)) and f - °does not alternate on [0, kJ for any k.
Thus the best approximation R(A\ .) to f on [0, kJ is non-degenerate and
f - R(A k

, • ) alternates twice on [0, k]. By drawing a diagram it is seen that
R(A \ 0) > f(O) = 1. But as f - °alternates on [0, 00], 0 is uniquely best on
[0, 00] and [0, 00). Further insights arise from work ("non-standard alter
nation") on approximation by reciprocals of polynomials by Brink and
Taylor.
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